Martin Halla

E-MAIL ORCID MGP ZBMATH MATHSCINET RICAM

Address

Johann Radon Institute for Computational and Applied Mathematics (RICAM)
Austrian Academy of Sciences
Altenberger Straße 69
4040 Linz, Austria
Room 407
0043 732 2468 5279
martin.halla [at] ricam.oeaw.ac.at

Short CV

Research interests

Analysis and numerical methods for partial differential equations

Research projects

Events

Publications

Technical reports

[4] A new numerical method for scalar eigenvalue problems in heterogeneous, dispersive, sign-changing materials
M. Halla, T. Hohage, F. Oberender
arXiv:2401.16368

[3] Radial perfectly matched layers and infinite elements for the anisotropic wave equation
M. Halla, M. Kachanovska, M. Wess
arXiv:2401.13483

[2] Convergence analysis of nonconform H(div)-finite elements for the damped time-harmonic Galbrun’s equation
M. Halla
arXiv:2306.03496

[1] A new T-compatibility condition and its application to the discretization of the damped time-harmonic Galbrun’s equation
M. Halla, C. Lehrenfeld, P. Stocker
arXiv:2209.01878

Refereed articles

[14] On the analysis of modes in a closed electromagnetic waveguide
M. Halla, P. Monk
Comptes Rendus. Mathématique, Volume 362, Pages 469-479 (2024)

[13] On the existence and stability of modified Maxwell Steklov eigenvalues
M. Halla
SIAM Journal on Mathematical Analysis, Volume 55, Issue 5, Pages 5445-5463 (2023)

[12] Electromagnetic Steklov eigenvalues: existence and distribution in the self-adjoint case
M. Halla
Research in the Mathematical Sciences, Volume 10, Issue 2, Article 18 (2023)

[11] On the approximation of dispersive electromagnetic eigenvalue problems in two dimensions
M. Halla
IMA Journal of Numerical Analysis, Volume 43, Issue 1, Pages 535-55 (2023)

[10] Radial complex scaling for anisotropic scalar resonance problems
M. Halla
SIAM Journal on Numerical Analysis, Volume 60, Issue 5, Pages 2713-2730 (2022)

[9] On the treatment of exterior domains for the time-harmonic equations of stellar oscillations
M. Halla
SIAM Journal on Mathematical Analysis, Volume 54, Issue 5, Pages 5268-5290 (2022)

[8] On the well-posedness of the damped time-harmonic Galbrun equation and the equations of stellar oscillations
M. Halla, T. Hohage
SIAM Journal on Mathematical Analysis, Volume 53, Issue 4, Pages 4068-4095 (2021)

[7] Analysis of radial complex scaling methods: scalar resonance problems
M. Halla
SIAM Journal on Numerical Analysis, Volume 59, Issue 4, Pages 2054-2074, (2021)

[6] Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility
M. Halla
Numerische Mathematik, Volume 148, Issue 2, Pages 387-407, (2021)

[5] Electromagnetic Steklov eigenvalues: approximation analysis
M. Halla
ESAIM: Mathematical Modelling and Numerical Analysis, Volume 55, Number 1, Pages 57-76, (2021)

[4] Two scale Hardy space infinite elements for scalar waveguide problems
M. Halla, L. Nannen
Advances in Computational Mathematics, Volume 44, Issue 3, Pages 611-643 (2018)

[3] Convergence of Hardy space infinite elements for Helmholtz scattering and resonance problems
M. Halla
SIAM Journal on Numerical Analysis, Volume 54, Issue 3, Pages 1385–1400 (2016)

[2] Hardy Space Infinite Elements for Time Harmonic Wave Equations with Phase and Group Velocities of Different Signs
M. Halla, T. Hohage, L. Nannen, J. Schöberl
Numerische Mathematik, Volume 133, Issue 1, Pages 103–139 (2016)

[1] Hardy space infinite elements for time-harmonic two-dimensional elastic waveguide problems
M. Halla, L. Nannen
Wave Motion, Volume 59, Pages 94-110 (2015)

Thesis

Analysis of radial complex scaling methods for scalar resonance problems in open systems
M. Halla
PhD Thesis, Technische Universität Wien (2019)